
A Step-by-Step Guide 
to Migrating from Virtual
Machines to ContainersMigrating from VMs to

Containers with Kubernetes:  

A Step-by-Step Guide

Migrating from VMs to
Containers with Kubernetes:  
A Step-by-Step Guide
The landscape of application deployment has undergone a significant
transformation in recent years. Traditional virtual machines (VMs),
while reliable, are increasingly giving way to container-based
architectures that offer unprecedented flexibility and efficiency. This
guide walks you through the process of migrating from virtual
machines to containers using Kubernetes.
 

Even though virtual machines have been the backbone of enterprise
computing for decades, providing isolation, resource allocation, and
the ability to run multiple environments on a single physical server,
containers represent a more lightweight and agile approach to
application deployment.

Key advantages of containerization are:

 Lightweight footprint: Containers share the host OS kernel,
consuming far less resources compared to full VMs

 Consistent environments: Containers ensure identical deployment
across development, staging, and production environments

 Rapid scaling: Quickly scale up or down application instances
based on demand

 Improved resource utilization: More instances of an application
can be deployed on the same server

 Simplified dependency management: Applications are packaged
with their required dependencies, thus making a single small
cohesive deployable unit.

1

Understanding Virtual
Machines & Containers
What are Virtual Machines?

Virtual Machines are software-defined environments that emulate
physical computers. They operate by creating an isolated, virtualized
layer on top of a physical host machine's hardware. This virtualization
layer is managed by a software called hypervisor. Hypervisor allocates
and manages the host's physical resources like CPU, memory, storage,
and network interfaces among the virtual machines. Each VM has its
own virtual hardware, including a virtual CPU, virtual memory, virtual
disks, and virtual network adapters.

What are containers?

Containers are lightweight, portable units designed to package an
application along with all its dependencies, configurations, and
libraries. This enables consistent deployment across different
computing environments. Unlike traditional virtual machines,
containers share the host operating system's kernel, making them
more efficient and faster to start up. This approach to application
packaging ensures that the application runs reliably and in the exact
same manner whether it’s running in a testing environment, in
production or locally on a developer’s system. Containers achieve this
consistency by bundling everything needed to run the application. The
code, runtime, system tools, system libraries, and settings are all
bundled into a single self-contained package.

2

Comparing VMs and
containers?

If you want a more detailed comparison between containers and
virtual machines, checkout our blog post on the topic.

Characteristic

Portability

Scalability

Isolation

Resource utilization

Boot time

Limited

Slow

High

Less efficient

Slower

VMs

Excellent

Rapid

Limited

Very efficient

Quicker

Containers

3

https://www.naviteq.io/blog/blog-containers-vs-virtual-machines-vms-which-one-should-you-use/

What is Kubernetes?
Kubernetes is an extensible open source system which is used to
deploy, scale and manage containerized applications. As containers
are a widely adopted technology in the modern DevOps ecosystem, a
tool is needed to manage these container deployments effectively.
Kubernetes solves this issue and is the leading tool in container
orchestration space. It automates operational tasks of container
management and includes built-in commands for deploying
applications, rolling out changes, scaling up and down and monitoring
your applications, thus making application management easy and
streamlined.

What are the features 
of Kubernetes?

 Automated rollouts and rollbacks: Kubernetes supports zero-
downtime updates by gradually introducing new versions of
applications and provides the ability to automatically roll back to
previous versions if any errors are detected, minimizing risks
associated with software updates

 Self-healing: Kubernetes automatically replaces and reschedules
containers that fail, kills unresponsive containers, and maintains
continuous application availability by constantly monitoring and
correcting the state of deployed services

 Service discovery and load balancing: It automatically assigns IP
addresses to containers and intelligently distributes network traffic,
creating a stable and responsive deployment environment that
simplifies inter-service communication

 Scaling: Kubernetes scales your application up and down with a
simple command, with a UI, or automatically based on CPU usage.
Kuber

 Secret and configuration management: It securely stores and
manages sensitive information, allowing teams to update
configurations without rebuilding container images and ensuring
that critical data remains encrypted and protected.

4

Structure of a container
deployment using Kubernetes
A container deployment using Kubernetes has these general
components

 kubectl: Command-line interface tool used by DevOps engineers
for interacting with and managing Kubernetes clusters

 API Server: API Server is the central control hub that exposes the
Kubernetes API and handles all administrative tasks and
communication between components

 etcd: It is a key-value store used as Kubernetes' primary database
for storing cluster configuration and state

 Scheduler: The scheduler assigns newly created pods to nodes
based on resource requirements, affinity/anti-affinity rules, and
available computing resources

 Control manager: It runs the controller processes that regulate the
state of the cluster, ensuring the actual state matches the desired
state

 Node: A server instance that runs containerized applications in
Kubernetes

 Container Runtime: The tool responsible for running containers.
Some common container runtimes are Docker, containerd 
and CRI-O

 kubelet: Kubernetes agent running on each node that ensures
containers are running in a pod

 Pod: Pod is the smallest deployable unit in Kubernetes. It can
contain one or more containers that share resources.

5

6

Pre-migration considerations
1. Assess applications

 Identify applications suitable for containerization (stateless
microservices are ideal)

 Evaluate application dependencies (complex OS dependencies
might require refactoring)

 Assess performance requirements and potential impact of
containerization.

2. Define goals

Set clear objectives for migration (e.g., faster deployments, improved
scalability, reduced costs).

3. Select tools

 Docker: Container creation and management

 Kubernetes: Container orchestration platform

 Helm: Package manager for Kubernetes deployments (charts)

 CI/CD Tools: Integrate container builds and deployments into your
CI/CD pipeline (e.g., Jenkins, GitLab CI, GitHub Actions).

7

Preparing the environment
1. Infrastructure and dependencies

 Ensure your infrastructure can support containerized workloads i.e
it has sufficient CPU, memory and network bandwidth

 Choose a container-optimized operating system (OS) for your
Kubernetes nodes

 Configure your network to support container networking e.g., CNI
plugins

 Select a storage solution compatible with Kubernetes persistent
volumes for stateful applications.

2. Container runtime

Choose a container runtime like Docker, containerd, CRI-O, or Podman
to execute container images on your nodes.

3. Kubernetes setup

 Decide on a managed Kubernetes services such as AKS, EKS, GKE
or a self-hosted deployment

 Configure cluster networking using flannel, weave net etc

 Set up persistent storage provisioning. Some common options are
hostPath, NFS, iSCSI

 Implement role-based access control (RBAC) for secure access to
the cluster

 Configure monitoring and logging for your Kubernetes cluster
using tools like Prometheus, Grafana etc.

8

https://www.docker.com/

Step-by-step migration process
Step 1: Plan the migration

 Prioritize applications for containerization

 Create a detailed inventory of applications, including

 Runtime environment
 Base operating system
 Configuration file
 Environment variable
 Storage requirement
 Network dependencie

 Categorize applications by complexity and migration difficulty

 Stateless web applications are generally easier to containerize  
than those with shared file systems

 Develop a phased migration roadmap with milestones

 Setting up Kubernetes
 Establishing container registry and image management
 Creating base container images and Dockerfile templates
 Implementing container security scanning, monitoring, and

logging
 Training teams on container technologies and best practices.

Step 2. Create container images

 Use Dockerfiles to define the environment and dependencies for
each application

 Leverage multi-stage builds for efficient image creation

 Separate the build environment from the runtime environment
to minimize image size.practices.

9

 Minimize image size

 Remove unnecessary files, caches, and temporary data
 Use .dockerignore to exclude irrelevant files from the build

context
 Chain RUN commands with && to reduce layer count
 Use minimal base images (e.g., slim or alpine) when appropriate
 Only install required packages and dependencies

 Implement best practices for image security

 Run containers as non-root users
 Set filesystem and volume permissions appropriately
 Regularly update base images to patch vulnerabilities
 Use COPY instead of ADD to prevent remote file injection
 Specify exact versions of base images and dependencies
 Implement resource limits and constraints
 Scan images for vulnerabilities using tools like Trivy or Snyk
 Use proper secrets management solutions

 Leverage official base images when possible for consistency and
security.

Step 3: Test containerized applications

 Thoroughly test containerized applications in a staging
environment to identify and address issues proactively

 Perform unit testing to verify isolated functionality of containerized
components

 Conduct integration testing to ensure containerized applications
work together as expected

 Implement performance benchmarking to compare containerized
vs. non-containerized versions

 Perform security scanning of container images to identify
vulnerabilities

 Conduct compatibility testing across different environments (OS,
cloud providers, storage classes). 10

Step 4: Implement orchestration with Helm

Use Helm charts to package and deploy applications to Kubernetes. To
implement orchestration with Helm, you'll first need to create a chart
structure which includes a Chart.yaml file that defines metadata, a
values.yaml file for configurable parameters, and templates directory
containing Kubernetes manifest templates.  

The process of creating a basic chart structure is

 Initialize a new chart with helm create chartname

 Define chart metadata in Chart.yaml including dependencies

 Create default values in values.yaml

 Include README.md with usage instructions and configuration

details.

11

https://helm.sh/

Step 5: Deploy to production

Deployment strategie

 Define your deployment strategy and implement it using CI\CD

tools (GitHub actions, ArgoCD etc.)

 Test your deployments 24/7, especially during and after the new

version rollouts.

Robust monitorin

 Kubernetes Metrics Server: Collects metrics about cluster
resources, nodes, pods, and containers. This should only be used
for autoscaling purposes

 Prometheus: Monitor custom metrics and alerts using
Prometheus

 Grafana: Visualize metrics and create custom dashboards using
Grafana

 Jaeger: Implement distributed tracing to track requests across
microservices using Jaeger.

12

https://prometheus.io/
https://grafana.com/
https://www.jaegertracing.io/

Autoscalin

 Horizontal Pod Autoscaler (HPA): Automatically scales the
number of pods based on CPU utilization or custom metrics

 Cluster autoscaler: Automatically scales the number of nodes in
the cluster

 Vertical Pod Autoscaler (VPA): Automatically adjusts resource
requests and limits for pods.

Centralized loggin

 Log rotation: Configure log rotation policies to manage disk
space

 Log aggregation: Centralize logs from all nodes and pods

 Log analysis: Use tools like Logstash to parse and analyze logs.

Rollback mechanism

 Kubernetes rollback: roll back deployments to previous versions
in case of issues

 Configuration management: Use tools like Helm or Kustomize
to manage configuration and roll back changes

 Automated rollback triggers: Set up automated rollbacks
based on monitoring metrics and alerts.

13

Key challenges and solutions
Handling state and storage

 Persistent Volumes (PVs) and Persistent Volume Claims (PVCs):
Use PVs to provision storage resources and PVCs to request storage
from PVs and ensure data persistence across pod restarts and node
failures

 StatefulSets: Manage stateful applications that require stable
storage and network identities. It’s ideal for databases, message
queues, and other stateful services

 External storage solutions: Integrate with cloud-native storage
providers like AWS EBS, GCP Persistent Disk, and Azure Disk
Storage using CSI drivers to leverage features like dynamic
provisioning snapshots and replication.

Security considerations

 Image scanning: Use tools like Trivy or Clair to scan container
images for vulnerabilities and ensure images are up-to-date and
free of known vulnerabilities

 Network policies: Define network policies to control
communication between pods and external networks. Limit
network exposure and prevent unauthorized access

 Secrets management: Use Kubernetes Secrets to securely store
sensitive information. You should also consider external secrets
management tools like HashiCorp Vault and/or External Secrets  
for advanced features

 Role-Based Access Control (RBAC): Implement RBAC to control
access to Kubernetes resources. Grant permissions based on user
roles and responsibilities.

1414

https://www.hashicorp.com/products/vault
https://external-secrets.io/latest/

Managing complexity with Kubernetes tools

 Helm: Package and deploy complex applications to Kubernetes
using Helm. It manages application dependencies, configurations,
and upgrades

 ArgoCD: Implement GitOps workflows for automated deployments
and rollbacks using ArgoCD. It can be used to sync Kubernetes
manifests with Git repositories

 Prometheus and Grafana: Monitor Kubernetes clusters and
applications proactively using tools like Prometheus and visualize
metrics and create custom dashboards using Grafana.

Additional considerations

 Kubernetes operators

 Automate the management of complex applications and
infrastructure

 Provide lifecycle management, configuration, and scaling

 Service mesh

 Simplify service-to-service communication and improve
reliability

 Implement advanced features like traffic management, security,
and observability

 Continuous Integration and Continuous Delivery (CI/CD)

 Automate the build, test, and deployment process
 Integrate with Kubernetes to streamline the deployment

pipeline.

151515

Post-migration best practices 
for Kubernetes
Some of the best practices they you should follow post-migration:

Image versioning and tagging

 Semantic versioning: Use semantic versioning
(MAJOR.MINOR.PATCH) to clearly identify changes in images

 Image tagging

 Latest: Points to the most recent image. Avoid using the latest
tag images in production environments

 Version tags: Specific versions, e.g., v1.0.0

 Environment tags: Environment-specific tags, e.g., dev, staging,
prod

 Commit SHA tags: Link images to specific Git commits for
traceability.

Immutable infrastructure

 Deploy new versions: Instead of modifying existing deployments,
deploy new versions with updated configurations

 Configuration management: Use tools like Helm or Kustomize to
manage configurations and updates.

1616

Monitoring and optimization

 Kubernetes Metrics server: Collect metrics about cluster resources,
nodes, pods, and containers

 Prometheus: Monitor custom metrics and alerts

 Grafana: Visualize metrics and create custom dashboards

 Alertmanager: Set up alerts for critical issues, such as pod failures,
resource exhaustion, and application errors

 Resource utilization: Monitor CPU, memory, and disk usage to
identify optimization opportunities

 Performance profiling: Use tools like kubectl top pod and kubectl
describe pod to analyze pod performance

 Rightsizing: Adjust resource requests and limits to optimize
resource allocation

 Autoscaling: Use Horizontal Pod Autoscaler (HPA) to automatically
scale applications based on load.

Security best practices

 Image scanning: Regularly scan container images for
vulnerabilities

 Network policies: Implement network policies to control traffic
flow between pods

 Secrets management: Use Kubernetes Secrets or external secrets
management tools

 RBAC: Enforce role-based access control to limit user permissions

 Regular security audits: Conduct regular security assessments to
identify and address vulnerabilities.

17

Continuous improvement

 Stay updated: Keep up-to-date with Kubernetes releases and
security patches

 Continuous Integration/Continuous Delivery (CI/CD): Automate
the deployment pipeline

 A/B testing: Experiment with different configurations and
deployments

 Feedback loops: Gather feedback from users and operations teams
to improve future deployments.

18

Conclusion
Migrating from virtual machines to a containerized Kubernetes
environment is a complex and transformative journey that requires
careful planning, technical expertise, and strategic execution. While
the benefits of containerization are substantial i.e improved scalability,
efficiency, and deployment speed, the process is not without its fair
share of challenges. Organizations often underestimate the intricacies
involved in container migration, from redesigning application
architectures to managing stateful services and ensuring secure,
performant deployments. Given these complexities, partnering with
experienced technology consultants like that from Naviteq can be a
game-changer. Our services like Kubernetes Management, Monitoring
and Logging Management, Infrastructure as a Code and CI/CD setup
can help you in setting up a robust DevOps infrastructure. Our experts
possess specialized knowledge in cloud-native technologies, enabling
us to accelerate your migration process. This allows your team to
concentrate solely on product development, freeing them from the
burden of dealing with the intricate details of the migration itself.

Additional resources

 https://cloud.google.com/migrate/containers/docs/getting-starte

 https://cloud.ibm.com/docs/solution-tutorials?topic=solution-

tutorials-vm-to-containers-and-kubernete

 https://www.youtube.com/watch?v=MuX3m149Fp

 https://kubernetes.io/docs/concepts/overview/

Ready to get started?
Contact Naviteq today to learn how our experts can help you
containerize your applications with Kubernetes in an efficient and
scalable manner.

19

https://www.naviteq.io/
https://www.naviteq.io/services/kubernetes-cluster-management/
https://www.naviteq.io/services/monitoring-and-logs-management/
https://www.naviteq.io/services/monitoring-and-logs-management/
https://www.naviteq.io/services/infrastructure-as-a-code/
https://www.naviteq.io/services/ci-cd-pipelines/
https://cloud.google.com/migrate/containers/docs/getting-started
https://cloud.ibm.com/docs/solution-tutorials?topic=solution-tutorials-vm-to-containers-and-kubernetes
https://cloud.ibm.com/docs/solution-tutorials?topic=solution-tutorials-vm-to-containers-and-kubernetes
https://www.youtube.com/watch?v=MuX3m149FpI
https://www.naviteq.io/contacts/

